
1

IBM Software Group

®

Raising the Level of Development:
Models, Architectures, Programs
Dr. James Rumbaugh
IBM Distinguished Engineer

IBM Software Group | Rational software

Why Is Software Difficult?

Business domain and computer have different
concepts
Applications require lots of details
Code requires internal coordination
Lots of repetitious code

2

IBM Software Group | Rational software

Bridging the Gap

Align
Domain specific language at the top

Abstract
Several layers of models with increasing detail

Architect
Systematic organization for internal details

Automate
Use tools to generate code

IBM Software Group | Rational software

Code-Only Development

Deceptively simple
Lack of planning leads to trouble

Weak architecture
Bad decomposition
Inconsistent formats and interactions
Bad for teamwork
Lots of detailed work
Brittle for changes

3

IBM Software Group | Rational software

Model Driven Architecture (MDA)

Build high-level models
Expressed in domain concepts

Generate platform-specific code
Into specified architectures

Using automated tools
Based on standards

IBM Software Group | Rational software

MDA Approach

Object Management Group (OMG) initiative
Platform Independent Model (PIM)

Captures logic of the application

Implementation profile
Platform
Technology decisions

Platform Specific Models (PSM)
Target multiple platforms
Translator incorporates platform knowledge

PIM

PSM

Code

4

IBM Software Group | Rational software

Needed for MDA

Problem domain models
UML or domain-specific language (DSL)

Architecture frameworks
Make assumptions about infrastructure
Use them to remove details from models

Automated tools
Modeling tools
Repositories
Translators

IBM Software Group | Rational software

Needed for MDA

Problem domain models
Architecture frameworks
Automated tools

5

IBM Software Group | Rational software

UML

Build models in UML (Unified Modeling Language)
Higher level than programming languages
Adapt UML to application domains with profiles

Special domain concepts
Constraints on the use of general UML constructs

UML is still a general-purpose language
May be a lot of repetitious details

IBM Software Group | Rational software

Domain Specific Language (DSL)

Syntax and semantics for a particular purpose
Reduce conceptual gap

Capture business-level content
More intuitive syntax

Reduce mindless repetition
Predefined control and data patterns
Eliminate repetitious control specification
Generate low-level details

6

IBM Software Group | Rational software

DSL Examples

yacc
Unix compiler-compiler

GUI Builder
Visually construct user interface

Desktop publishing editor (FrameMaker, Word)
See the final output while editing

MIDI
Music specification language

Mathematica
Mathematics notation

IBM Software Group | Rational software

SDL

Specification and Description Language (SDL)
International Telecommunications Union (ITU)
standard
Special syntax and logic for telephone systems
SDL concepts added to UML 2.0
SDL can be modeled as a UML profile

7

IBM Software Group | Rational software

DSL Styles

Declarative
Say what to do
Avoid control logic

Imperative
Say how to do it
Explicit control logic

Hybrid
High-level declarative
Low-level imperative

IBM Software Group | Rational software

Aspect Oriented Programming (AOP)

Separate different functional aspects
Distinct syntax for each aspect
Aspects cut across implementation code
Examples: Security, persistence, concurrency, logging

Translator weaves aspects into code
xxxxxxx

yyyyyyy

zzzzzzz

aaaaaa

bbbbbb

cccccc

mmmmm

nnnnnnn

ooooooo

xxxxxxx

aaaaaa

mmmmm

yyyyyyy

bbbbbb

Cccccc

nnnnnnn

Ooooooo

Zzzzzzz

8

IBM Software Group | Rational software

AOP is a Kind of DSL

DSL and AOP depend on good translators
Current AOP languages are awkward

Too much explicit coordination

Expect AOP features from DSL effort

IBM Software Group | Rational software

Needed for MDA

Problem domain models
Architecture frameworks
Automated tools

9

IBM Software Group | Rational software

Architecture

Decomposition into subsystems
Topology
Interaction rules
Data formats
Resource management
Hooks for future extensions
Scaffolding for testing

IBM Software Group | Rational software

Architecture Framework

Framework = reusable architecture pattern
Includes:

Skeleton execution environment
Predefined subsystems and topology
Interaction and data rules, formats, interfaces
Attachment points for plug-ins
Component libraries of useful functionality
Sample applications

Implementation development environments (IDE)
Eclipse, .NET, J2EE

10

IBM Software Group | Rational software

Framework Advantages

Enable DSL to eliminate repeated patterns
Ensure consistency
Excellent for incremental design
Enforce design trade-offs

IBM Software Group | Rational software

Specifying Frameworks

UML models
Structure models
Interaction models
Interface models
Patterns

DSL syntax
Code
Text descriptions

11

IBM Software Group | Rational software

Other Experience-Based Content

Patterns
Solution to a common problem
Parameters
Design, modeling, architecture level
Has structure, interaction rules, trade-offs, guidelines

Components
Module ready to plug in
Has UML models, code, text descriptions, keywords

IBM Software Group | Rational software

Needed for MDA

Problem domain models
Architecture frameworks
Automated tools

12

IBM Software Group | Rational software

Modeling Tools

Build models
Edit models
Apply patterns
Organize large models
Coordinate among large teams
Check for errors and bottlenecks

Generate code
Load technology and architecture assumptions
Trace generated code to model

IBM Software Group | Rational software

Repositories

Standard format
Support multiple tools and languages
Access and update models
MOF (Meta-Object Protocol)
XML (Extended Markup Language)

13

IBM Software Group | Rational software

Translation

Map from DSL and UML to code
Use platform knowledge
Optimize code
Reformat to match target language
Query-View-Transformation (QVT) project to define
standard format

IBM Software Group | Rational software

Translator Requirements

Understand source and target syntax
Generated code must be efficient enough

Plenty of experience building good compilers

Support programming language plug-ins
Lots of existing code
Handle unexpected situations

Incremental
Maintain traceability
Small change to source small change to target

14

IBM Software Group | Rational software

Transformation Styles

Partial
Full
Embedded code in model
Built-up transformation

IBM Software Group | Rational software

Partial Transformation

Transform source to code
Implementation details are missing
Usually only data structures and code outlines

Then edit the code manually
Gets code stared quickly
Finish the job by programming

Round-trip transformation possible
Maintain traceability links
Reverse transformation often ambiguous
Difficult to maintain synchronization

Quick way to start using models

15

IBM Software Group | Rational software

Full Generation

One-way transformation from source to code
Generate code with all details
Don’t touch the generated code
Have to anticipate all details in the DSL

Compiler
Format conversion

UML-to-XML

Good in tightly defined situations

IBM Software Group | Rational software

Embedded Code in Model

Embed code fragments in the model
When DSL is inadequate

Generate code from model
Insert embedded code into generated code

Edit the source model to make changes
Regenerate code when needed
Keeps the entire specification
together

Flexible but mixes levels
transitionT1 () {

ctr = a--;

send (a, b);

}

void methodA () {

return (a + b);

}

16

IBM Software Group | Rational software

Built-up Transformation

Explicitly model the transformation itself
Assemble out of smaller pieces

Adjust the transformation to change the result
Design = building a transformation

Source model doesn’t change
Reuse on many source models

Can have multiple transformations
Powerful but tricky to build

IBM Software Group | Rational software

One-way and Two-way Transformation

One-way—generate source to target
Can’t modify target code
Can insert plug-ins to code
No synchronization problems
Can add and modify nested code without regeneration

Two-way—round trip engineering
Maintain traceability links
Modify source or target
Propagate changes to other model
Much more difficult to implement

17

IBM Software Group | Rational software

Executable Models

Allow execution with partial specification
Dummy functions
Missing data
Unknown decisions

Incomplete models execute with less detail
May require user guidance

Test architecture early
Add detail later

IBM Software Group | Rational software

Executable UML

Plain UML is not executable
Pick action language (built-in actions too primitive)
Select semantic variation points
Supply missing execution semantics

• Tasking, external formats

It is still a general-purpose language
DSLs may be more expressive for most purposes

It may be a useful intermediate format
Output of DSL mappings
Input to code/platform mappings

18

IBM Software Group | Rational software

Standards

Models
Architecture frameworks
Code plug-ins
Encourage an ecology of vendors

Big vendors: Large generic tools
Small vendors: Niche-specific plug-ins
Use plug-ins with generic tools
Standards guarantee access to entire market
Example: Photoshop filters

IBM Software Group | Rational software

Status

MDA is still early
DSLs are still rare but coming
Generic frameworks exist

Domain frameworks will be developed

Transformation technology under development
QVT standard
Much existing compiler experience

MDA will greatly improve software development

19

IBM Software Group | Rational software

