il
f
Il
4.."
i

IBM Software Group

Raising the Level of Development:
Models, Architectures, Programs
Dr. James Rumbaugh

IBM Distinguished Engineer

ations.

‘ IBM Software Group | Rational software

iiml I
Illil
il

Why Is Software Difficult?

= Business domain and computer have different Q
concepts

= Applications require lots of details
= Code requires internal coordination
= Lots of repetitious code

0 =
5 =
=

[e s s e |

‘ IBM Software Group | Rational software

Bridging the Gap

n A||gn Q

» Domain specific language at the top l
= Abstract

» Several layers of models with increasing detail
= Architect

» Systematic organization for internal details

= Automate
» Use tools to generate code

9 <— U
EEISTS

‘ IBM Software Group | Rational software

Code-Only Development

= Deceptively simple

= Lack of planning leads to trouble
» Weak architecture
» Bad decomposition
» Inconsistent formats and interactions
» Bad for teamwork
» Lots of detailed work
» Brittle for changes

‘ IBM Software Group | Rational software

Model Driven Architecture (MDA)

= Build high-level models
» Expressed in domain concepts

= Generate platform-specific code
» Into specified architectures

= Using automated tools
» Based on standards

‘ IBM Software Group | Rational software

MDA Approach

= Object Management Group (OMG) initiative
= Platform Independent Model (PIM)

» Captures logic of the application PIM
= Implementation profile
» Platform
» Technology decisions
PSM

= Platform Specific Models (PSM)

» Target multiple platforms @
» Translator incorporates platform knowledge

Code

‘ IBM Software Group | Rational software

Needed for MDA

= Problem domain models
» UML or domain-specific language (DSL)

= Architecture frameworks
» Make assumptions about infrastructure
» Use them to remove details from models

= Automated tools
» Modeling tools
» Repositories
» Translators

‘ IBM Software Group | Rational software

Needed for MDA

= Problem domain models

‘ IBM Software Group | Rational software

UML

= Build models in UML (Unified Modeling Language)
= Higher level than programming languages

= Adapt UML to application domains with profiles
» Special domain concepts
» Constraints on the use of general UML constructs

= UML is still a general-purpose language
» May be a lot of repetitious details

‘ IBM Software Group | Rational software

Domain Specific Language (DSL)

= Syntax and semantics for a particular purpose

= Reduce conceptual gap
» Capture business-level content
» More intuitive syntax

= Reduce mindless repetition
» Predefined control and data patterns
» Eliminate repetitious control specification
» Generate low-level details

‘ IBM Software Group | Rational software

DSL Examples

= yacc
» Unix compiler-compiler
= GUI Builder
» Visually construct user interface
= Desktop publishing editor (FrameMaker, Word)
» See the final output while editing
= MIDI
» Music specification language
= Mathematica
» Mathematics notation

|
)

‘ IBM Software Group | Rational software

SDL

= Specification and Description Language (SDL)

= International Telecommunications Union (ITU)
standard

= Special syntax and logic for telephone systems
= SDL concepts added to UML 2.0
= SDL can be modeled as a UML profile

‘ IBM Software Group | Rational software

DSL Styles

= Declarative
» Say what to do
» Avoid control logic

= Imperative
» Say how to do it
» Explicit control logic
= Hybrid
» High-level declarative
» Low-level imperative

‘ IBM Software Group | Rational software

Aspect Oriented Programming (AOP)

XXX

Yyyyyyy
2222222

aaaaaa

bbbbbb

ceceece

mmmmm /
nnnnnn

0000000

e

= Separate different functional aspects
» Distinct syntax for each aspect
» Aspects cut across implementation code
» Examples: Security, persistence, concurrency, logging

= Translator weaves aspects into code

XXHKXKXX

aaaaaa

YYYYYyy
bbbbbb

Ccecce

0000000
Zzz2222

‘ IBM Software Group | Rational software

AOP is a Kind of DSL

= DSL and AOP depend on good translators

= Current AOP languages are awkward
» Too much explicit coordination

= Expect AOP features from DSL effort

‘ IBM Software Group | Rational software

Needed for MDA

= Architecture frameworks

|I
|

1
i
I

)

‘ IBM Software Group | Rational software

Architecture

= Decomposition into subsystems
= Topology

= Interaction rules

= Data formats

= Resource management

= Hooks for future extensions

= Scaffolding for testing

‘ IBM Software Group | Rational software

Architecture Framework

= Framework = reusable architecture pattern

= Includes:
» Skeleton execution environment
» Predefined subsystems and topology
» Interaction and data rules, formats, interfaces
» Attachment points for plug-ins
» Component libraries of useful functionality
» Sample applications

= Implementation development environments (IDE)
» Eclipse, .NET, J2EE

‘ IBM Software Group | Rational software

Framework Advantages

= Enable DSL to eliminate repeated patterns
= Ensure consistency

= Excellent for incremental design

= Enforce design trade-offs

‘ IBM Software Group | Rational software

Specifying Frameworks

= UML models
» Structure models
» Interaction models
» Interface models
» Patterns

= DSL syntax
= Code
= Text descriptions

‘ IBM Software Group | Rational software

Other Experience-Based Content

= Patterns
» Solution to a common problem
» Parameters
» Design, modeling, architecture level
» Has structure, interaction rules, trade-offs, guidelines

= Components
» Module ready to plug in
» Has UML models, code, text descriptions, keywords

‘ IBM Software Group | Rational software

Needed for MDA

= Automated tools

‘ IBM Software Group | Rational software

Modeling Tools

= Build models
» Edit models
» Apply patterns
» Organize large models
» Coordinate among large teams
» Check for errors and bottlenecks

= Generate code
» Load technology and architecture assumptions
» Trace generated code to model

‘ IBM Software Group | Rational software

Repositories

= Standard format

= Support multiple tools and languages
= Access and update models

= MOF (Meta-Object Protocol)

= XML (Extended Markup Language)

‘ IBM Software Group | Rational software

Translation

= Map from DSL and UML to code

= Use platform knowledge

= Optimize code

= Reformat to match target language

= Query-View-Transformation (QVT) project to define
standard format

‘ IBM Software Group | Rational software

Translator Requirements

= Understand source and target syntax

= Generated code must be efficient enough
» Plenty of experience building good compilers

= Support programming language plug-ins
» Lots of existing code
» Handle unexpected situations

= Incremental

» Maintain traceability
» Small change to source - small change to target

‘ IBM Software Group | Rational software

Transformation Styles

= Partial

= Full

= Embedded code in model
= Built-up transformation

‘ IBM Software Group | Rational software

Partial Transformation

= Transform source to code

» Implementation details are missing

» Usually only data structures and code outlines
= Then edit the code manually

» Gets code stared quickly

» Finish the job by programming
= Round-trip transformation possible

» Maintain traceability links

» Reverse transformation often ambiguous

» Difficult to maintain synchronization

= Quick way to start using models

‘ IBM Software Group | Rational software

Full Generation

= One-way transformation from source to code
» Generate code with all details
» Don't touch the generated code
» Have to anticipate all details in the DSL
= Compiler
= Format conversion
» UML-to-XML

= Good in tightly defined situations

‘ IBM Software Group | Rational software

Embedded Code in Model

= Embed code fragments in the model

» When DSL is inadequate
= Generate code from model

» Insert embedded code into generated code
= Edit the source model to make changes

» Regenerate code when needed

» Keeps the entire specification o= ->
together

=
= Flexible but mixes levels Eé

‘ IBM Software Group | Rational software

Built-up Transformation

= Explicitly model the transformation itself
» Assemble out of smaller pieces

= Adjust the transformation to change the result
» Design = building a transformation

= Source model doesn’t change
» Reuse on many source models

= Can have multiple transformations
= Powerful but tricky to build

‘ IBM Software Group | Rational software

One-way and Two-way Transformation

= One-way—generate source to target

» Can't modify target code

» Can insert plug-ins to code

» No synchronization problems

» Can add and modify nested code without regeneration
= Two-way—round trip engineering

» Maintain traceability links

» Modify source or target

» Propagate changes to other model

» Much more difficult to implement

‘ IBM Software Group | Rational software

Executable Models

= Allow execution with partial specification
» Dummy functions
» Missing data
» Unknown decisions

= Incomplete models execute with less detail
» May require user guidance

= Test architecture early
= Add detail later

‘ IBM Software Group | Rational software

Executable UML

= Plain UML is not executable
» Pick action language (built-in actions too primitive)
» Select semantic variation points
» Supply missing execution semantics
* Tasking, external formats
= |t is still a general-purpose language
» DSLs may be more expressive for most purposes

= It may be a useful intermediate format
» Output of DSL mappings
» Input to code/platform mappings

‘ IBM Software Group | Rational software

Standards

= Models

= Architecture frameworks

= Code plug-ins

= Encourage an ecology of vendors
» Big vendors: Large generic tools
» Small vendors: Niche-specific plug-ins
» Use plug-ins with generic tools

» Standards guarantee access to entire market
» Example: Photoshop filters

‘ IBM Software Group | Rational software

Status

= MDA is still early
= DSLs are still rare but coming

= Generic frameworks exist
» Domain frameworks will be developed

= Transformation technology under development
» QVT standard
» Much existing compiler experience

= MDA will greatly improve software development

IBM Software Group | Rational software

